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Abstract

Running untrusted user-level code inside an operating system kernel has been stud-

ied in the 1990’s but has not really caught on. We believe the time has come to

resurrect kernel extensions for operating systems that run on highly-parallel clusters

and supercomputers. The reason is that the usage model for these machines differs sig-

nificantly from a desktop machine or a server. In addition, vendors are starting to add

features, such as floating-point accelerators, multicore processors, and reconfigurable

compute elements. An operating system for such machines must be adaptable to the

requirements of specific applications and provide abstractions to access next-generation

hardware features, without sacrificing performance or scalability.
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Introduction

Large-scale, high-performance clusters and supercomputers used for scientific parallel com-
puting require specialized operating systems (Brightwell, Maccabe, and Riesen 2003). Usu-
ally, these machines run a single, parallel application that is spread across many or all the
nodes of a system. Each process that is part of that application is assigned to a CPU (core)
and “owns” it for the duration of the run. That means that during that run, no other
processes that are not part of that application will be assigned to these CPUs. Multiple
applications space-share a parallel machine.

OS-noise has been identified as a major culprit that inhibits scalability (Petrini, Ker-
byson, and Pakin 2003; Ferreira, Brightwell, and Bridges 2008). Parallel applications ex-
change messages and often need to wait for the data before they can proceed. If one of
the processes is delayed because the local operating system is busy running other processes
or doing housekeeping tasks, it will delay the entire application. As parallelism increases,
the likelihood that any one operating system instance is not currently running the parallel
application process, increases as well. That means the parallel application is slowed down
as it is run on more nodes and resources are wasted as hundreds or thousands of nodes wait
for the straggler.

All the resources of a node: CPUs, network interfaces, and memory, are allocated to
processes of the same application. While memory protection between processes is still useful
for debugging, it is no longer strictly necessary. In fact, it might be performance beneficial to
let processes running on multiple cores freely share the memory of a single node (Brightwell,
Pedretti, and Hudson 2008). Policies for process control should also be determined by the
application itself. Therefore, within a node, less protection is needed than what typical
operating systems provide.

However, some protection mechanism still need to be enforced by the operating system.
For example, the application should have full control over the network interface (OS bypass)
so it can be managed as efficiently as possible, but trusted header information, such as the
source node ID and process ID of a message, must be under operating system control. In
other words, the operating system should let an application manage the nodes that have
been allocated to it, while still protecting the resources of the machine that belong to other
applications.

Many clusters, especially the larger ones, and most supercomputers employ a parallel
file system whose storage devices are external to the machine or attached to dedicated I/O
nodes. Compute nodes do not have local disks. Most other peripherals that are supported
by desktop operating systems are missing as well. In fact, the main peripheral accessible to
the application is a high-speed network interface sometimes directly attached to the memory
bus. All I/O operations, remote memory access, and explicit message passing are handled
by that one device.

This architecture limits the number of devices an operating system must support. Fur-
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thermore, many modern network interfaces are intelligent and interact with the application
directly. Copying data through the operating system would have disastrous effects on net-
work performance.

Because of these characteristics, parallel applications running at large scale have very
specific demands of an operating system. In addition, the hardware to build clusters and
supercomputers is changing and requires adaptation from the application and the operating
system. The operating system is expected to match an application to the hardware it runs
on as efficiently as possible.

Some of the new hardware features that require applications and operating systems to
adapt are here already. One example is the use of multicore processors. Other features are
not in production use yet, but are being discussed as potential performance booster for next-
generation systems. Examples include attaching graphic processing units (GPUs) or other
specialized processors, such as IBM’s cell architecture, to general purpose CPUs to accelerate
floating-point intensive calculations. More exotic devices, for example Field Programmable
Gate Arrays (FPGAs) that can be reconfigured on the fly for a specific application need,
or Processor in Memory (PIM) devices that could help alleviate memory bus throughput
demands, are on the horizon.

An operating system must provide abstractions that unify several of these technologies
and make them accessible to portable applications. Such applications cannot be re-written
for every possible new feature a vendor offers. Rather, it is the operating system’s role to
manage the new resource, and make them available to the application.

A look at the list at www.top500.org reveals that the number of processors built into the
five-hundred fastest systems in the world, is increasing every year. With a higher component
count the likelihood of a hardware failure increases. This reduces the Meantime Between
Failures (MTBF) for large scale applications.

A similar argument can be made for the software side. The likelihood that a subtle timing
bug is triggered increases with the number of code instances running. A small operating
system kernel is easier to debug, test, and reason about than a multi-million line, full-
featured operating system. Furthermore, it is easier to restart or migrate a small operating
system in case of a hardware failure or an early warning.

An earlier HotOS paper (Hunt, Larus, Tarditi, and Wobber 2005) listed the challenges
for next-generation systems as: dependability, security, system configuration, extension,
and multi-processor programming. While that paper was written in the context of desktop
operating systems, many of the points the authors make also apply to operating systems
for high-end parallel computing. In particular, system configuration and multi-processor
programming are areas that need to be addressed. We think that kernel extensions allow us
to write small, simple, and scalable operating systems with the flexibility to adapt to the
demands of future architectures and applications.

For these reasons we believe the time has come to revisit extensible operating systems
and apply some of the techniques and lessons learned in the 1990’s to high-end, parallel
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computing. We envision a very small kernel that provides base services and can be extended
by the runtime system of the machine or by the application itself. Some of these extensions
adapt the kernel to a given machine and are probably inserted during boot time by a trusted
entity. Less trusted extensions can be inserted by the applications. These are only needed
while the application is running and are meant to provide a better impedance match between
the application and the underlying operating system and hardware.

We will explain our design ideas in the next section and then discuss why we think these
ideas are beneficial to high-end parallel computing platforms. We will look at related work
and provide a summary at the end of the paper.
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Nimble

Work on a kernel called Kitten that builds on our experiences with lightweight kernels (Wheat,
Maccabe, Riesen, van Dresser, and Stallcup 1994a; Maccabe, Bridges, Brightwell, Riesen,
and Hudson 2004; Riesen, Brightwell, Bridges, Hudson, Maccabe, Widener, and Ferreira
2009) for massively parallel machines is currently under way. The goal of the Kitten project
is to efficiently use the multicore resources that have begun to appear in modern parallel
machines. In this section we describe Nimble, an extension infrastructure for a lightweight
kernel such as Kitten.

Extensibility

Core operating system tasks, such as initializing devices, and simple process and memory
management, will be provided by the lightweight kernel. In contrast to a full-features desktop
or server operating system, lightweight kernels provide only rudimentary services. There is a
single, or at most a couple, of processes running on each CPU core and there is no support for
demand paging, kernel-level threads, TCP/IP, dynamic libraries and many other amenities
that desktop users expect but limit performance and scalability.

Nevertheless, some applications may be willing to make performance and scalability sac-
rifices for a given feature. At other times in may not be practical to rewrite as service or a
library on which an application depends. Additionally, providing just one more feature may
not compromise performance or scalability, while making all of them available will cripple
the operating system and the machine it runs on.

Therefore, we propose to use kernel extensions to customize the operating system to the
specific hardware it is running on and adapt it to the currently running application. There
are two types of extensions. Trusted kernel extensions have direct access to the hardware
and are used by the system administrator and the runtime system to adapt the kernel to the
hardware. This is typically done at boot time and is akin to loadable kernel modules that
Linux provides.

Application-inserted kernel extensions are generally not trusted and do not have direct
access to hardware or other privileged resources. However, remember that most of the node
resources have been allocated to the application already. The kernel must enforce access
policies to resources outside the node, but most of the node resources are managed by the
application itself. This is typically done through a library that inserts a kernel extension on
behalf of the application.

For example, an application-inserted kernel extension can augment the basic process
scheduler present in the lightweight kernel to allow for active messages to force a context
switch to a user-level handler as soon as they arrive. An application that consists of a single
process per CPU core could run with an infinite time quantum.
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An application could use kernel extensions to dedicate a CPU core to handle message-
passing traffic from the network interface and run compute-intensive processes on the other
cores. An application that is not communication intensive may use an interrupt-driven kernel
extension to handle network interface requests, and use all CPU cores for computation.

Latency-sensitive operations, such as remote memory accesses or collective message-
passing operations, could benefit from a kernel extension that handles some network requests
in the kernel on behalf of the application instead of incurring a full context switch to run a
user-level handler.

Instead of the kernel providing a slew of mechanisms, it provides only basic services and
the ability to insert extensions that provide new mechanisms and set policy on behalf of the
application.

Implementation

In the 1990’s several methods to extend kernels were investigated. One that has not had
very much attention is interpretation. An interpreter is relatively easy to write and it is easy
to shield other parts of the kernel from code that is interpreted. For code from a trusted
source, Nimble will disable access and privilege checks in the interpreter. This will yield
a small performance advantage, but more importantly, it will allow trusted extensions to
access and manipulate protected resources.

Another reason we are considering an interpreter is that we expect most extensions to
be small, simple, and to only run for brief moments. For example, a process scheduler that
needs to pick the next process to run from a pool of less than a handful, does not require
a lot of instructions. The code to do the actual context switch is written in C, already
resides in the lightweight kernel, and can be called by the interpreter. Code to initiate a
data transfer through the network interface already exists as well. A kernel extension makes
a single subroutine call to start the data transfer.

Techniques for fast interpretation have been studied for a long time and are still un-
der investigation for today’s byte code interpreters. One such technique, called threaded
code (Bell 1973), is one we intend to pursue.

During code insertion the extension is threaded. Each instruction in the extension is
converted to a subroutine call into the interpreter. This makes interpretation a two-step
process. First, the instructions are examined and translated. In the second step, during
the execution of an extension, execution proceeds along a thread that consists of various
subroutines the interpreter provides.

When Nimble starts executing an extension, for each original statement in the extension,
control flow will be redirected into the appropriate subroutine inside the interpreter. The
subroutines contain the code that encapsulates the semantics of a given statement in the
kernel extension.
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The subroutines are written in C and compiled into Nimble. We intend to have two
versions of most subroutines. One that performs access checks and another which does not.

Threaded code reduces the interpretation overhead to one or two assembly instruction
per interpreted statement in the kernel extension. While many statements will be simple,
such as loading a value, many are more complex and the overhead of interpretation will be
negligible.

There are variations on threaded code. The method we described above is called subrou-
tine threading. During the translation step the statements to be interpreted are translated
into a series of CPU “call subroutine” instructions. It can be argued that this technique is not
interpretation, since the call instructions are simply executed after the original statements
have been translated. Depending on the CPU architecture, direct threaded coded may be
faster. Direct threaded code is just a compact list of addresses. The interpreter reads these
addresses and calls the subroutine where these addresses point to. Either of these techniques
are faster than interpreting byte code (Ertl 1993; Klint 1979; Dewar 1975).

Nimble will add mechanisms to the lightweight kernel to insert and remove extensions,
to call them for specific events, such as interrupts or application traps into the kernel, allow
one extension to call another, and to limit the running time of an extension.
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Discussion

Operating system kernel extensions have been extensively studied in the 1990’s, but have not
really caught on in main-stream desktop operating systems. We believe that one reason for
that is that much of the extensibility was aimed at improving operating system performance
by avoiding unnecessary kernel-to-user-level-transitions by executing user code in the kernel.

There are other techniques for that and machines have gotten fast enough for many
tasks that were considered to be in need of improvement in the 1990’s. We believe that
kernel extensions have a place in high-end parallel computing for several reasons. One is
that speed is still of primary concern here and that inefficiencies in the operating system can
severely limit the scalability of a parallel machine. The other reason is that next-generation
supercomputers will employ technologies – starting with multicore processors to attached
floating-point engines – that will be difficult to exploit in a general purpose way.

Each application and programming model has its own specific needs. If a hardware
resource and an access policy can be customized for a specific application, performance and
scalability benefits will follow. In the type of machines we are considering, this is possible
because they are space shared and whole sets of nodes are allocated to an application. Letting
the application manage these resources is more efficient than providing general purpose
mechanisms and policies. We need an operating system that can be used to manage the
machine as a whole (allow for node allocation for example), but gets out of the way when
an application wants to make use of the resources allocated to it.

Therefore, we want to give each application the opportunity to set its own resource
allocation policy and add the specific features it needs in an operating system, while not
being burdened by services it does not need and that could limit performance or scalability.
Allowing applications to insert user-level code into the kernel seems an ideal way to achieve
this flexibility.

Allowing user-level code to execute inside a lightweight kernel makes sense because the
usage model and the requirements for high-performance parallel computers are quite different
from the needs of a desktop user or even a server farm. Some aspects of embedded computing
apply as well, but these systems, once deployed, are more static in nature than the application
mix run on a parallel computer.
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Related work

The idea of executing user code, an extension, inside the kernel has seen several incarnations.
Sand-boxing, also called software-based fault isolation (Wahbe, Lucco, Anderson, and Gra-
ham 1993), is the idea of limiting data accesses to a certain segment of main memory. This is
done by inserting code before potentially unsafe instructions that sets (or checks) the upper
n bits of the address to a value that corresponds to a segment which the code is allowed to
access. For our approach this may be too limiting, since we do want to make some mem-
ory mapped devices accessible to extensions, while preventing access to memory-mapped
registers that must be protected.

The SPIN project (Bershad, Chambers, Eggers, Maeda, McNamee, Pardyak, Savage, and
Sirer 1994) used a trusted compiler to generate spindles that get inserted into the kernel. The
spindles are digitally signed to ensure that they were generated by the trusted compiler. The
runtime system for the chosen language and the cryptographic tools to verify the signatures
would need to be available on each node. Depending on the source language chosen, this
may be a significant amount of code that is statically linked with the parallel application.

Interpreters have been studied extensively and some of them have been embedded in
kernels before. The BSD packet filter is one example (Mogul, Rashid, and Accetta 1987).
Another is our work of adding a FORTH interpreter to the firmware of a Myrinet network
interface (Wagner, Jin, Panda, and Riesen 2004). We used that to improve the performance
of collective MPI operations such as broadcast.

Interpreters are often considered to be too slow for system services. However, our ex-
tensions are small and perform simple tasks. It should be possible to gather the most often
used constructs and sequences into a virtual machine which can be optimized to execute
efficiently (Pittman 1987; Proebsting 1995). Then, using indirect threaded code or direct
threaded code techniques, build an extremely fast interpreter (Bell 1973; Dewar 1975; Kogge
1982; Ertl 1993).

Several operating systems have made use of extensions. We already mentioned SPIN.
Global Layer Unix (GLUnix) (Vahdat, Ghormley, and Anderson 1994) used software-based
fault isolation to move OS functionality into user level libraries. We want to move user
code functionality into the kernel. The VINO kernel was designed to let applications specify
the policies the kernel uses to manage resources. That is what we are interested in, but
specifically for high-performance parallel environments, instead of database management
systems for which VINO was designed.

In the µChoices operating system (Campbell and Tan 1995; Tan, Raila, and Campbell
1995) agents can be inserted into the kernel. These agents are written in a simple, flexible
scripting language similar to TCL, and are interpreted. Agents batch a series of system calls
into a single procedure that requires only one trap into the kernel to be executed. Agents
use existing kernel services and do not extend the functionality of the kernel or provide
services that are not available at user level. Agents are a simple optimizations to eliminate
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the overhead of several system calls. We also need to mention the MIT Exo kernel (Engler,
Kaashoek, and O’Toole 1995; Engler and Kaashoek 1995). It attempts to lower the OS
interface to the hardware level, eliminating all abstractions that traditional operating systems
provide, and concentrates on multiplexing the available physical resources. This is similar to
our lightweight kernels which provide only very basic services and rely on user-level libraries
to implement other services. Nimble is meant to extend this concept and push some of that
functionality back into the kernel when it is needed at run time.

Methods to safely execute untrusted code in a privileged environment are compared
in (Small and Seltzer 1996).
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Conclusions and future work

Lightweight kernels have proven successful in the past on Intel’s Paragon and ASCI Red at
Sandia National Laboratories, on Cray’s XT-3 Red Storm, and on IBM’s Blugene/L series
of machines. These lightweight kernels are small and scalable, allow applications to get most
of the available memory (without demand-paging) and run on tens of thousands of nodes in
parallel.

As more applications are being ported to these kinds of machines, the demand for ad-
ditional features and services increases. A modern operating system must provide some of
these features without compromising scalability or efficiency.

We are working on a new lightweight kernel called Kitten that carries our experiences
with large-scale parallel machines forward to machines with potentially hundreds of cores per
node. We have started the design of Nimble which will be integrated into Kitten. Nimble will
provide the infrastructure to let applications extend Kitten’s functionality. These extensions
are meant to provide additional services and provide access to next-generation hardware
features.
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Epilogue

We submitted this paper to HotOS XII, 2009. Unfortunately, it got rejected. The reviewers
had some interesting points which we would like to address here and should have had in the
original paper.

Operating systems for supercomputers are not of great interest to the main-stream OS re-
search community. When we mention high-performance parallel computing, Google, MapRe-
duce (Dean and Ghemawat 2004; Dean and Ghemawat 2008), and Hadoop (Apache Hadoop
Project Members 2009) come to the minds of our reviewers. That is unfortunate, but not
something we can easily change. Google’s use of Linux and commodity hardware is a form
of distributed, rather than parallel, computing (Riesen, Brightwell, and Maccabe 1998), but
the general OS community lumps distributed and parallel computing together.

In distributed computing, latencies are high and computations are much less coupled
(dependent on each other) than in parallel computing. That means that some issues plaguing
tightly coupled, highly-parallel machines, are no problem at all for loosely coupled clusters.
OS noise (Petrini, Kerbyson, and Pakin 2003; Ferreira, Brightwell, and Bridges 2008), for
example, is only an issue in high-end parallel computing. Extremely low-latency message
passing, and highly efficient collective communications are also much more important in
parallel computing than distributed computing. After all, if a system has to deal with disk
access latencies, delays caused by wide-area networking stacks, and the latencies of messages
crossing a room or even farther, then issues in the sub-microsecond range do not come into
play.

Therefore, a general-purpose operating system like Linux is very suitable for distributed
computing, but it may not be for parallel computing. The lack of knowledge and interest in
systems software for massively parallel computing is not something we can change. However,
the reviewers had more concrete comments and questions, that we should address. We do
that in the sections below.

Are extensible systems leading us astray?

Two reviews mentioned (Druschel, Pai, and Zwaenepoel 1997) in which Druschel, Pai, and
Zwaenepoel argue that extensible systems are not necessary and lead the OS research com-
munity away from more important research topics. They say that making extensions safe is
not necessary. During development and research it is not necessary, because these extensions
are not used by ordinary users on production systems. Later, these extensions can be built
directly into the kernel and be treated like any other kernel modification.

The effort of taking a research extension and incorporating it into a production kernel is
error prone and not trivial. A small research group may have the resources to develop the
extension, but not the will and time to build it into a production kernel. If such an extension
can be run safely inside a production kernel, it is much more likely to be used by end users.
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Also, we envision that some extensions will be written by application developers. These
application specific extensions may run in the kernel or the NIC and provide specialized
services that are only useful to the currently running application. System software on the
nodes allocated to this application, and the rest of the system, must be protected from malice
and bugs of these application-specific extensions.

Finally, one reason that general-purpose operating systems are not suitable for high-end
parallel computing is that they are riddled with services and code that is not (currently)
needed and interferes with performance and scalability of these systems. Kernel extensions
allow us to keep bloat under control by only loading those extensions that are required for
a given application.

Do extensions add to OS noise?

One reviewer wondered whether it is possible that extensions add noise rather than reduce
it. Each extension and the infrastructure needed to execute it, add overhead. Whether
this overhead adds to noise is not clear. Usually noise is associated with asynchronous
execution of code not directly related to the operation on hand. Extensions are meant to
make responding to events, such as receiving a message, faster. We do not believe that
the extensions we envision in this report would add to OS noise. However, it is certainly
something that should be investigated.

Exokernel and Corey

An alternative approach to extensions, suggested by the reviewers, is to use an Exokernel (En-
gler, Kaashoek, and O’Toole 1995) or Corey (Boyd-Wickizer, Chen, Chen, Mao, Kaashoek,
Morris, Pesterev, Stein, Wu, Dai, Zhang, and Zhang 2008) in a multicore system. The Ex-
okernel does to provide the mechanisms we need to tailor an OS to the application needs
in a massively parallel system. For things that must be done inside a kernel, the Exokernel
even allows for downloadable code; i.e., kernel extensions! In many ways, application-specific
handlers in the Exokernel are exactly the kernel extensions we propose in this paper. We go
a step further and would allow OS developers to download extensions that are not subject
to the protection mechanisms required for application-provided extensions.

Besides the ability to download unprotected extensions, the main difference between
our approach and the Exokernel is the realization that in a massively parallel system all
node resources are turned over to a single application. The Exokernel still assumes there
are multiple processes sharing the resources of a node. While that is true for a few HPC
applications, most of them simply need access to the floating-point units and the ability to
communicate with other nodes.

As a matter of fact, in (Kaashoek, Engler, Ganger, Briceño, Hunt, Mazières, Pinckney,
Grimm, Jannotti, and Mackenzie 1997) the Exokernel designers make many of the points
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for kernel extensions we make. Given the specialized environment and usage of a massively
parallel system, we need even fewer of the mechanisms an Exokernel provides. Going with
the philosophy of removing as much code and mechanism from the kernel as possible, we are
proposing a kernel that is even more lightweight than the Exokernel.

Some of the things Corey does, in particular when and when not to share data among
cores, and what work to assign to a specific core, are some of the things our extensions are
supposed to do. However, we believe that these decisions are better made at the application
level, but they do need support from the OS to be implemented; i.e., policy on how to
use local resources that have been assigned to a job should be made by the application.
The mechanism to implement that policy needs to reside in the kernel to maintain safety
and integrity of the system. Only kernel extensions provide the flexibility to deal with new
architectural features quickly and customized to an application’s requirements.

Could an Exokernel be used to implement the features Corey provides? If an Exokernel
is flexible and fast enough to do that, then choosing an Exokernel over Corey is preferable,
since Corey does not provide all the features we want for kernel extensions. Of course, if
an Exokernel is unsuitable to replace Corey, then it is equally unsuitable to replace kernel
extensions.

Kernel modules

Why can we not simply use kernel modules in existing systems such as Linux or Chorus?
The reason is that kernel modules in Linux, in particular, are meant to add device drivers
to Linux, not completely change the way the kernel handles common resources such as
processor state and time slices, and memory. It is the same reason that drove the design of
the Exokernel: once too much mechanism and policy is embedded in a kernel, it cannot be
removed when it is not needed or gets into the way.

One question we received is how can extensions be kept small, so they still execute
quickly under interpretation, when the kernel provides so few services? The majority of high-
performance parallel applications need only a core set of services: floating-point operations
and the ability to communicate with other nodes. Many of the additional services needed
are either slim, handling specific messages in the kernel for example, or infrequently invoked,
loading a dynamic library for example. Furthermore, interpretation is not the only solution
we intend to pursue. For some extensions it may make more sense to build them into the
kernel and simply load that version of the kernel before the application that needs this
extension is started.
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